6 research outputs found

    Nonlinear Model Predictive Control for Motion Generation of Humanoids

    Get PDF
    Das Ziel dieser Arbeit ist die Untersuchung und Entwicklung numerischer Methoden zur Bewegungserzeugung von humanoiden Robotern basierend auf nichtlinearer modell-prĂ€diktiver Regelung. Ausgehend von der Modellierung der Humanoiden als komplexe Mehrkörpermodelle, die sowohl durch unilaterale Kontaktbedingungen beschrĂ€nkt als auch durch die Formulierung unteraktuiert sind, wird die Bewegungserzeugung als Optimalsteuerungsproblem formuliert. In dieser Arbeit werden numerische Erweiterungen basierend auf den Prinzipien der Automatischen Differentiation fĂŒr rekursive Algorithmen, die eine effiziente Auswertung der dynamischen GrĂ¶ĂŸen der oben genannten Mehrkörperformulierung erlauben, hergeleitet, sodass sowohl die nominellen GrĂ¶ĂŸen als auch deren ersten Ableitungen effizient ausgewertet werden können. Basierend auf diesen Ideen werden Erweiterungen fĂŒr die Auswertung der Kontaktdynamik und der Berechnung des Kontaktimpulses vorgeschlagen. Die EchtzeitfĂ€higkeit der Berechnung von Regelantworten hĂ€ngt stark von der KomplexitĂ€t der fĂŒr die Bewegungerzeugung gewĂ€hlten Mehrkörperformulierung und der zur VerfĂŒgung stehenden Rechenleistung ab. Um einen optimalen Trade-Off zu ermöglichen, untersucht diese Arbeit einerseits die mögliche Reduktion der Mehrkörperdynamik und andererseits werden maßgeschneiderte numerische Methoden entwickelt, um die EchtzeitfĂ€higkeit der Regelung zu realisieren. Im Rahmen dieser Arbeit werden hierfĂŒr zwei reduzierte Modelle hergeleitet: eine nichtlineare Erweiterung des linearen inversen Pendelmodells sowie eine reduzierte Modellvariante basierend auf der centroidalen Mehrkörperdynamik. Ferner wird ein Regelaufbau zur GanzkörperBewegungserzeugung vorgestellt, deren Hauptbestandteil jeweils aus einem speziell diskretisierten Problem der nichtlinearen modell-prĂ€diktiven Regelung sowie einer maßgeschneiderter Optimierungsmethode besteht. Die EchtzeitfĂ€higkeit des Ansatzes wird durch Experimente mit den Robotern HRP-2 und HeiCub verifiziert. Diese Arbeit schlĂ€gt eine Methode der nichtlinear modell-prĂ€diktiven Regelung vor, die trotz der KomplexitĂ€t der vollen Mehrkörperformulierung eine Berechnung der Regelungsantwort in Echtzeit ermöglicht. Dies wird durch die geschickte Kombination von linearer und nichtlinearer modell-prĂ€diktiver Regelung auf der aktuellen beziehungsweise der letzten Linearisierung des Problems in einer parallelen Regelstrategie realisiert. Experimente mit dem humanoiden Roboter Leo zeigen, dass, im Vergleich zur nominellen Strategie, erst durch den Einsatz dieser Methode eine Bewegungserzeugung auf dem Roboter möglich ist. Neben Methoden der modell-basierten Optimalsteuerung werden auch modell-freie Methoden des verstĂ€rkenden Lernens (Reinforcement Learning) fĂŒr die Bewegungserzeugung untersucht, mit dem Fokus auf den schwierig zu modellierenden Modellunsicherheiten der Roboter. Im Rahmen dieser Arbeit werden eine allgemeine vergleichende Studie sowie Leistungskennzahlen entwickelt, die es erlauben, modell-basierte und -freie Methoden quantitativ bezĂŒglich ihres Lösungsverhaltens zu vergleichen. Die Anwendung der Studie auf ein akademisches Beispiel zeigt Unterschiede und Kompromisse sowie Break-Even-Punkte zwischen den Problemformulierungen. Diese Arbeit schlĂ€gt basierend auf dieser Grundlage zwei mögliche Kombinationen vor, deren Eigenschaften bewiesen und in Simulation untersucht werden. Außerdem wird die besser abschneidende Variante auf dem humanoiden Roboter Leo implementiert und mit einem nominellen modell-basierten Regler verglichen

    A computational method for key-performance-indicator-based parameter identification of industrial manipulators

    Get PDF
    We present a novel derivative-based parameter identification method to improve the precision at the tool center point of an industrial manipulator. The tool center point is directly considered in the optimization as part of the problem formulation as a key performance indicator. Additionally, our proposed method takes collision avoidance as special nonlinear constraints into account and is therefore suitable for industrial use. The performed numerical experiments show that the optimum experimental designs considering key performance indicators during optimization achieve a significant improvement in comparison to other methods. An improvement in terms of precision at the tool center point of 40% to 44% was achieved in experiments with three KUKA robots and 90 notional manipulator models compared to the heuristic experimental designs chosen by an experimenter as well as 10% to 19% compared to an existing state-of-the-art method

    Combining multi-level real-time iterations of Nonlinear Model Predictive Control to realize squatting motions on Leo

    No full text
    Today’s humanoid robots are complex mechanical systems with many degrees of freedom that are built to achieve locomotion skills comparable to humans. In order to synthesize whole-body motions, real-tme capable direct methods of optimal control are a subject of contemporary research. To this end, Nonlinear Model Predictive Control is the method of choice to realize motions on the physical robot using model-based optimal control. However, the complexity of the problem results in a high computational time that falls short of the expectations of robotic experimenters and control engineers. In this article, we show how advanced NMPC methods can be applied to improve the control rate by a factor of 10–16 up to 190Hz. This is achieved by thread-based parallelization of two controllers and by efficiently reusing control problem linearizations of the last iteration to provide fast feedback by one controller while the other controller prepares the next nonlinear step including the evaluation of the multi-body dynamics and the respective sensitivities. This way, the bottleneck of the roll-out of up to 130 ms can partly be side-stepped by repeated calls of the much faster feedback phase of ~5ms. This enables a realization of a squatting task on the actual 2D-robot Leo of Delft University of Technology, which was not possible using a conventional Nonlinear Model Predictive Control scheme

    Closed loop control of walking motions with adaptive choice of directions for the iCub humanoid robot

    No full text
    International audienceThe widely spread iCub humanoid robot has proved to be able to walk straight forward by means of an offline pattern generator, which did not allow for online adjustments and interactions. In this paper, we present a closed-loop control framework based on a Nonlinear Model Predictive Control pattern generator with feedback at the Center of Mass (CoM) position. This framework allows us to extend the walking capabilities of iCub to different walking directions, such as curved, sideways and backward walking. When compared to existing methods, the walking speed of iCub is increased by approximately 75% and the step period decreased by 45%. It was successfully tested with a reduced version of the iCub (HeiCub), but it was also shown to be applicable to the full iCub in simulation. The measured outcomes of the experiments are the walking velocity, the cost of transport, tracking precision of the Zero-Moment Point (ZMP), CoM and joint trajectories. The online feedback was shown to improve the walking stability by means of an improvement of the CoM tracking precision by 30% and the ZMP tracking precision by 60% compared to the same method without CoM position feedback control

    A Reactive Walking Pattern Generator Based on Nonlinear Model Predictive Control

    No full text
    International audienceThe contribution of this work is to show that real-time nonlinear model predictive control (NMPC) can be implemented on position controlled humanoid robots. Following the idea of " walking without thinking " , we propose a walking pattern generator that takes into account simultaneously the position and orientation of the feet. A requirement for an application in real-world scenarios is the avoidance of obstacles. Therefore the paper shows an extension of the pattern generator that directly considers the avoidance of convex obstacles. The algorithm uses the whole-body dynamics to correct the center of mass trajectory of the underlying simplified model. The pattern generator runs in real-time on the embedded hardware of the humanoid robot HRP-2 and experiments demonstrate the increase in performance with the correction

    Combining multi-level real-time iterations of Nonlinear Model Predictive Control to realize squatting motions on Leo

    No full text
    Today’s humanoid robots are complex mechanical systems with many degrees of freedom that are built to achieve locomotion skills comparable to humans. In order to synthesize whole-body motions, real-tme capable direct methods of optimal control are a subject of contemporary research. To this end, Nonlinear Model Predictive Control is the method of choice to realize motions on the physical robot using model-based optimal control. However, the complexity of the problem results in a high computational time that falls short of the expectations of robotic experimenters and control engineers. In this article, we show how advanced NMPC methods can be applied to improve the control rate by a factor of 10–16 up to 190Hz. This is achieved by thread-based parallelization of two controllers and by efficiently reusing control problem linearizations of the last iteration to provide fast feedback by one controller while the other controller prepares the next nonlinear step including the evaluation of the multi-body dynamics and the respective sensitivities. This way, the bottleneck of the roll-out of up to 130 ms can partly be side-stepped by repeated calls of the much faster feedback phase of ~5ms. This enables a realization of a squatting task on the actual 2D-robot Leo of Delft University of Technology, which was not possible using a conventional Nonlinear Model Predictive Control scheme.Biomechatronics & Human-Machine Contro
    corecore